PHASE EQUILIBRIA MOLECULAR TRANSPORT THERMODYNAMICS

Activity Coefficients as a Function of Structure and Media

N. C. DENO and HENRY E. BERKHEIMER Pennsylvania State University, University Park, Pa.

The activity coefficient, f, being the free energy per particle (activity/concentration), occupies a unique position in all problems involving equilibria. With the advent of transition state theory, it appears that these same activity coefficients will be the focal point of problems involving the variation of kinetics with solvent.

The most successful approach to the problem of the variation of f with solvent is that of McGowan (15), who developed a train of thought initiated by Langmuir. The purpose of the present work was to expand the experimental verification of McGowan's equation:

$$Log (c_1/c_2) = k_M P \tag{1}$$

UNCHARGED INERT SOLUTES

McGowan (15) demonstrated that Equation 1 correlated the partition of an inert uncharged solute between two immiscible liquids. P is the parachor of the solute; c_1 and c_2 are the concentrations (in moles per liter) of the solute in solvents 1 and 2; and k_M is a constant characteristic of the two solvents. McGowan showed that this equation was applicable even when c_1 represented the molar concentration of a liquid in itself; in that event, Equation 1 predicted the solubility in solvent 2.

Because inert uncharged solutes generally obey Henry's law, the relation $\log (c_1/c_2) = \log (f_2/f_1)$ is valid where f_1 and f_2 are the activity coefficients (activity = cf) of the solute in solvents 1 and 2. Equation 1 thus predicts the change in activity coefficient between two media. The great importance of such a relation led to amplifying the experimental test of Equation 1 to solutes possessing a greater variety of sizes and shapes than those originally cited by McGowan (15).

The data in Table I show that Equation 1 is generally valid for inert uncharged molecules including those possessing large dipole moments such as the halogen substituted hydrocarbons. When solvent 1 is any solvent giving a nearly ideal solution, and solvent 2 is water, the values of k_{11} center around 0.0130. The iodo compounds have values of log $(c_1/c_2)/P$ that are consistently too high. This discrepancy would be removed by a larger parachor atomic increment for iodine.

DERIVATION OF EQUATION 1

Equation 1 owes its origin to Langmuir's idea (13) that a major factor in solubility relationships was the energy needed to make a hole in the solvent in which to place the solute molecule. This idea was developed by several authors, and these

references are given by McGowan (14, 15). McGowan's derivation of Equation 1 is essentially as follows.

The free energy change accompanying the transfer of a particle of solute from solvent 1 to solvent 2 is given by Equation 2. E_{11} and E_{22} are the energies of hole formation in solvents 1 and 2. E_{1-S} and E_{2-S} are the interaction energies between solute, s, and solvents 1 and 2. The absence of any entropy term is based on the presumption that the freedom of motion of solute and solvent will not be inhibited if only nondirectional London dispersion forces are present. Further, the transfer of the particle of solute will be made under the condition that the concentration of solute in each phase is the same so that no entropy difference arises due to changes in concentration.

$$\Delta F = E_{11} - E_{22} - E_{1 \cup S} + E_{2 \cup S} \tag{2}$$

If $E_{1.S} = E_{2.S}$ Equation 2 simplifies to Equation 3. The success of Equation 1 naturally validates this interesting assumption. Independently, London dispersion forces were found to be insensitive to chemical composition from studies on solubilities of inert gases (10, 19) and from the fact that absorption energies of inert gases were insensitive to the chemical composition of the solid surface (3).

It is assumed that the energy required to make the hole is proportional to the volume of the hole and that the solutes volume is the same in both solvents. The parachor is used as the measure of the volume of solute. Equation 4 follows from these assumptions.

$$-\Delta F = E_{11} - E_{22} \tag{3}$$

 $-\Delta F = P(\text{constant}_1 - \text{constant}_2) = P(\text{constant})$ (4)

If a single standard state is defined for the solute in all phases, ΔF is given by Equation 5. The values of c_1 and c_2 are equal and cancel because of the stipulation that the transfer of solute particle was made at constant concentration. Equations 4 and 5 combine to give Equation 6.

$$\Delta F = RT \ln (a_2/a_1) = RT \ln (f_2 c_2/f_1 c_1) = RT \ln (f_2/f_1) \quad (5)$$

$$\text{Log } (f_2/f_1) = k_M P \tag{6}$$

Although Equation 6 has been derived for a particular process, all terms in Equation 6 are concentration independent if Henry's law applies. Thus, Equation 6 is valid when solutions of the solute in solvents 1 and 2 are in equilibrium and at equilibrium $f_2/f_1 = c_1/c_2$. Equation 6 thus reduces to Equation 1 and the derivation is complete.

The success of Equation 1 with molecules possessing large

Table I. Data on Solubility of Organic Compounds in Water at 25°C.

Constancy of $(1/p) \log (c_1/c_2)$, thus validity of Equation 1

Hydrocarbon	P^a	$(\operatorname{Log} c_1)^{\flat}$	$-(\log \epsilon_2)^{\ell}$	$\frac{\log\left(c_1/c_2\right)}{P}$	Ref.	Compound	P ^a	$(\operatorname{Log} c_1)^b$	$-(\log c_2)^{\prime}$	$b \frac{\log(\epsilon_1/\epsilon_2)}{P}$	Ref.
	Liquid Ar	omatic Hydr	ocarbons			Chlo	orinated	Aliphatic H	ydrocarbor	15	
Benzene	206	1.05	1.64	0.0131	(1, 6, 11)	Chloromethane	113			0.0106 4	(18)
Toluene	246	0.97	2.19	0.0129	(1, 6, 11)	Dichloromethane	153	1.20	0.63	0.0120	(18)
Ethylbenzene	286	0.91	2.79	0.0129	(1, 6, 11)	Trichloromethane	193	1.10	1 21	0.0120	(18)
1,2-Dimethylbenzene	283	0.91	2.72	0.0128	(1)	Tetrachloromethane	233	1.10	2 30	0.0142	(18)
1,3-Dimethylbenzene	286	0.91	2.76	0.0128	(1, 6)	Chloroethane	151	1.02	2.50	0.0142	(10)
1.4-Dimethylbenzene	286	0.91	2.73	0.0127	(1, 6)	1 1 Dishlamathana	101	1.15	1.93	0.0136	(10)
Propylbenzene	326	0.86	3 34	0.0129	(7,0)	1,1-Dichloroethane	191	1.08	1.29	0.0124	(18)
riopyidenzene	520	0.00	(3.00)	(0.0119)	(1)	1,2-Dichloroethane	191	1.10	1.06	0.0113	(78)
Lopropulbenzene	222	0.95	(3.00)	0.0117	(11)	1,1,1-Irichloroethane	231	1.00	2.01	0.0130	(78)
1.2.5. Thim at half an early	324	0.85	3.22	0.0127	(T)	1,1,2-Trichloroethane	231	1.03	1.48	0.0109	(18)
1,5,5-1 minethyldenzene	324	0.80	3.09	0.0122	(7)	1,1,1,2-Tetrachloroethane	271	0.98	2.18	0.0117	(18)
Butylbenzene	300	0.80	3.94	0.0129	(7)	1,1,2,2-Tetrachloroethane	271	0.98	2.77	0.0138	(18)
			(3.43)	(0.0116)	(11)	Pentachloroethane	311	0.92	2.64	0.0115	(18)
2-Butylbenzene	362	0.81	3.67 °	0.0124	(1)	1-Chloropropane	191	1.05	1.46	0.0132	(18)
<i>tert</i> -Butylbenzene	358	0.81	3.60	0.0123	(1)	2-Chloropropane	191	1.04	1.41	0.0128	(18)
<i>tert</i> -Amylbenzene	398	0.77	4.15	0.0124	(7)	1.2-Dichloropropane	231	1.01	1.61	0.0116	(18)
2-Octylbenzene "	526	0.65	5.80	0.0122	(5)	1.3-Dichloropropane	231	1.02	1.62	0.0116	(18)
Diphenylmethane	421	0.78	4.06	0.0115	(1, 5)	1-Chlorobutane	231	0.98	2.16	0.0136	(18)
1,2,3,4-Tetrahydro-						1-Chloro-2-methylpropane	227	0.97	2.00	0.0131	(18)
naphthalene	330	0.86	3.49	0.0132	(5)	2-Chloro-2-methylpropane	227	0.96	2.13	0.0136	(18)
Styrene	274	0.94	2.54	0.0127	(1)	ris 1.2 Dichloroethylene	170	1 1 2	1 44	0.01/3	(18)
a-Methylstyrene	310	0.88	3.01	0.0126	(5)	ture 1.2 Dichleneschelene	170	1.12	1.10	0.0140	(10)
1 1-Diphenylethylene	445	0.00	4 52	0.0110	(1)	trans-1,2-Dichloroethylene	1/9	1.12	1.19	0.0129	(18)
r, i-Dipitettytettytette		0.70	(3.19)	(0.0111)	(1)	1,1,2-1 richloroethylene	219	1.05	2.12	0.0145	(18)
2 4-Diphenyl 4 marked			(3.10)	(0.0111)	(0)						
2.7-Dipricityi-4-memyl-	507	0.62	6.09	0.0127	(5)	1					
Phonulo optulor o	264	0.02	0.96	0.0127	(0)	Liquid B	rominai	ed Aliphatic	Hydrocart	oons	
rnenylacetylene	204	0.96	2.35	0.0125	(5)	Dibromomethane	178	1.16	1.18	0.0131	(18)
						Tribromomethane	231	1.06	1.91	0.0129	(18)
						Bromoethane	164	1.12	1.08	0.0134	(18)
	Liquid Alii	phatic Hydre	ocarbons			1 2-Dibromoethane	216	1.06	1.67	0.0126	(18)
_					(1. Chloro-2-bromoethane	204	1.00	1 32	0.0117	(18)
Pentane	231	0.94	2.30	0.0140	(18)	1 1 2 2 Tetrobarm cethance	204	1.07	1.52	0.0117	(10)
Hexane	271	0.88	2.79	0.0135	(18)	1,1,2,2- Tetrabromoethane	321	0.93	2.73	0.0114	(18)
Heptane	311	0.84	3.15	0.0128	(18)	1-Bromopropane	204	1.04	1.70	0.0134	(18)
Octane	351	0.79	3.91	0.0134	(18)	2-Bromopropane	204	1.03	1.59	0.0128	(18)
Octadecane	751	0.48	6.67	0.0095	(4)	1-Bromobutane	244	0.98	2.36	0.0137	(18)
						1-Bromo-2-methylpropane	240	0.96	2.43	0.0141	(18)
	Solid Aror	natic Hydroe	arbons			Liquid	lodinate	d Aliphatic	Hydrocarb	ons	
						E V V					(10)
		$(\text{Log } c_1)^{\epsilon}$				Iodomethane	148	1.21	1.00	0.0149	(18)
1.2.4.5 Tetramethyl						Diiodomethane	223	1.09	2.35	0.0154	(18)
1,2,4,5-1etramethyl-	250	0.34	3.94	0.0117	(5)	Iodoethane	186	1.09	1.60	0.0145	(18)
Denzene Denzene	200	0.34	3.09	0.0113	(5)	1-Iodopropane	226	1.01	2.20	0.0142	(18)
Pentametnyidenzene	390	0.44	3.98	0.0115	(3)	2-Iodopropane	226	1.00	2.09	0.0137	(18)
Biphenyl	381	0.54	4.46	0.0131	(7,0)	1-Iodobutane	266	0.94	2.94	0.0146	(18)
				$(0.0127)^{5}$. ,
trans-1,2-Diphenyl-		0.24	5 00	0.010/	(1)						
ethylene	446	- 0.31	5.93	0.0126	(7)	Liquid H	alogena	ted Aromati	c Hvdrocar	bons	
Naphthalene	312	0.49	3.5/	0.0130	(0)	Fluenchemene	216	1 02	1 07	0.0124	(1)
			•	$(0.0125)^{j}$		Fluorobenzene	210	1.03	1.67	0.0134	(I)
Acenaphthene	364	0.06	4.40	0.0123	(5)	Chlorobenzene	246	0.98	2.44	0.0139	(I)
Pyrene	456	- 0.20	6.09	0.0129	(9)	Bromobenzene	259	0.98	2.68	0.0141	(1)
Triphenylene	525	- 0.75	6.75	0.0114	(9, 11)	Iodobenzene	281	0.85	3.11	0.0141	(1)
Phenanthrene	418	0.31	5.05	0.0128	(9, 11)	1,2-Dichlorobenzene	282	0.95	3.01	0.0140	(18)
				$(0.0121)^{f}$		1,3-Dichlorobenzene	286	0.94	3.08	0.0140	(18)
Anthracene	418	- 1.04	6.35	0.0127	(9, 11)						
Fluoranthene	459	0.07	5.90	0.0130	(9, 11)	⁴ Parachors computed from	tabulate	d parameter	rs (<i>16</i>).		
						b_{c_1} and c_2 are the concr	ns. in n	noles/liter_c	of the pure	e solute in it	$\operatorname{self}(c_{1})$
						and of a saturated solution	of the se	lute in wate	$r(c_0)$.		~~ (~1)
Chrysepe	524	- 1.54	8,18	0.0127	(9)	Values estimated by using	data in	1 M salt solu	ation and m	naking a sma	ll correc-
			7.56	0.0115	(\hat{n})	tion for salting out Data	isted fo	r the compo	unds in ru	re water pro	bably in
Benzlalanthracene	524	- 0.56	7 33	0.0129	(9.11)	error.		- me compo	unas in pu	.e water, pro	Subiy III
Benz[a]anthracene	524	- 0.30	8.27	0.0124	(3, 77)	^d Sample furnished by LA	Divon I	Director of A	merican D	troleum Inst	itute Re
Dibara la blasthassa	620	- 1.77	0.27	0.0124	(9, 11)	search Project 42 Ponnauly	onia St	nector or A		enoieum mst.	itute Ke-
Dibenz[a,n]anthracene	030	- 1.95	0./1	0.0108	(9,11)	Alalan solubilities in heres		ate Oniversit		1	1 . 1 1
						alute forms a poorly ideal	ne or in	a lew case	s toluene,	solvents in w	hich the
						Volues computed from the		mien les (-	11. 11 D T		J L L .
	Gaseou	s Hydrocarb	ons ^m			molar conce of the super-	cooled 1	iouid but r	1/62//F.L	$\omega_{\rm g} c_1$ should over the should be shoul	a be the
				Logic		concn. of the solid has been	i used	Log ca' ie i	the solubili	tv of the sur	ercooled
		$(Logh.)^{g}$ -	$(Log h_{n})^{h}$	$\operatorname{Lug}(\iota_1/\iota_2)$	Ref.	liquid in water It was	caled.	from the	relation	$\log \alpha d' = \log \alpha$	ar a i
		(P		$(I_{1}/458)(1/T - 1/T) =$	s proper	ed and evel	ined ho M	$c_2 = 10$	5 62 +
Mathani	70	1 70	2 97	0.0160	(18)	λ_{n} is Henry's law constant	t for +h	e solute in	henzene T	$\frac{1}{1}$	
Methane	15	1.70	2.0/	0.0100	(10)	hiters/moles	i for th	ic solute in	ocuzene. L	$\sum n x = n_1 x$	ue atm.
			a = :	0.0130	(10)	ht is commented in the	. le -				
Ethane	111	0.77	2.74	0.0177	(18)	n ₂ is corresponding Henry	s law co	nstant in wa	ter.		
				0.0154	(78)	$\log (c_1/c_2) = \log (h_2/h_2)$	1).				
Propane	151	0.40 J	2.86	0.0163	(8, 12)	Solvent 2-propanol instead	l of benz	ene.			
Butane	191	- 0.22 ^j	2.95	0.0166	(8, 72)	Solvent xylene instead of b	enzene.				
Ethylene	99	0.92	2.32	0.0141	(18)	'Calcd. from partition data	betweer	n benzene an	nd water.		
/ -				0.0148	(18)	^{<i>m</i>} Values of k_{11} for very smal	i molecu	les are abn	ormally hig	h because the	ey partly
Propene	139	0.09 *	2.03	0.0140	(18)	fit into interstitial space an	d thus th	ie hole requi	red for ther	n need only b	be partly
Acetylene	90	0.70	1.38	0.0075	(18)	generated. This effect is ex	nibited i	n these gased	ous hydroca	rbons.	/
·						-			· · · · · · · · · · · · · · · · · · ·		

Table II. Solute-Water Hydrogen Bonding Energies, E_{H}

				E_{H}^{b} ,					E_{μ}^{b} .
Compound	P^{a}	$(\text{Log } c_1)^a$	$-(\text{Log } c_2)^a$	Kcal./Mole	Compound	P^{a}	$(\text{Log } c_1)^a$	$-(\text{Log } c_2)^a$	Kcal./Mole
*		 D.1					D i j	· · · · ·	
		Ethers					Esters continued		
Ethylether	211	0.98	0.11	2.26	Isopentyl acetate	331	0.82	1.91	2.15
M (1) harmed ashee	211	1.00	0.11	1.04	Hamilagatata	275	0.72	2.05	2.13
Methyl propyl ether	211	1.00	0.56	1.80	nexylacetate	375	0.70	2.00	2.01
Methyl 2-propyl ether	207	1.00	0.06	2.23	Pentyi propionate	3/5	0.78	2.2.5	2.52
Ethyl propyl ether	251	0.92	0.67	2.30	Isopentyl propionate	3/1	0.78	2.21	2.51
Ethyl 2-propyl ether	247	0.91	0.56	2.38	Ethyl heptanoate	415	0.74	2.74	2.63
Methyl butyl ether	251	0.93	1.00	1.84	Pentyl butyrate	415	0.74	2.49	2.97
Methyl 1-(2-methyl-					Ethyl octanoate	455	0.70	3.39	2.49
propyl) ether	247	0.92	0.90	1.91	2.Chloroethyl acetate	255	0.97	0.61	2 37
Methyl 2-butyl ether	247	0.93	0.74	2.11	Ethel & sharel	255	0.7	0.01	215
Methyl dimethylethyl					Ethyl p-phenyl-	420	0.75	2 01	2 5 2
ether	243	0.93	0.23	2 74	propionate	430	0.75	5.01	2.52
Propulather	201	0.86	1.61	1 90				Median value	2.26
Dury 12 percel athen	201	0.00	1.01	1.60			Formate Esters		
2 D whether	207	0.65	1.54	2.11				0.45	
3-Propenyl etner	208	0.91	1.51	1.45	Ethyl formate	175	1.10	- 0.15	1.82
Methyl phenyl ether	266	0.97	2.97*	· · · *	Propyl formate	215	1.01	0.51	1.75
2,2'-Dichlorodiethyl					Isopropyl formate	211	1.00	0.63	1.52
ether	290	0.93	1.13	2.34	Isobutyl formate	251	0.93	1.00	1.82
1,1'-Dimethyl-2,2'-					Isopentyl formate	291	0.87	1.52	1.90
dichlorodiethyl ether	362	0.81	2.00	2.60				Median value	1.82
2,2-Dimethyloxacyclo-								incomm variae	
propane	192	1.05	0.12	1.82			Aromatic Esters		
Oxacyclohexane	221	1.01	0.03	2 52			0.00		
Chloromethyloxacyclo-			0.00	2.52	Methyl benzoate	310	0.90	1.53	2.19
propage	102	1 11	0.16	1.60	Ethyl benzoate	350	0.85	2.40	1.78
1 Chloromethyl 1	1/2	1,11	0.10	1.09	Ethyl cinnamate	415	0.77	3.09	2.11
1-Chloromethyl-1-					Benzyl benzoate	485	0.72	4.13	2.00
methyloxacyclo-					,			Median value	2.05
propane	228	1.02	0.55	1.90		Die	sters and Triesters		
Diethoxymethane	271	0.90	0.16	1.81 ^d			presidente interterio		
1,1-Diethoxyethane	307	0.84	0.33	1.93 ^d	Dimethyl butanedioate				4
1.2-Diethoxyethane	311	0.85	0.15	2 08 4	(succinate)	319	0.89	1.21	1.40 "
Trippopoyumethane	497	0.67	0.07	2.00	Diethyl propanedioate				
1.3.5 Triovacuelo	407	0.07	0.77	2.14	(malonate)	359	0.82	0.90	2.02 ^d
1,5,5-1110xacyclo-	201	0.00	0.14	1 226	Diethyl butanedioate				
nexane	501	0.68	0.14	1.52	(succinate)	399	0.78	1.00	2.34 ^d
		Ketones	Median value	2.11	Diethyl pentanedioate				
		Heromes			(glutarate)	439	0.74	1 33	248 d
2-Pentanone	238	0.98	0.20	2.62	Diethyl bevanedioate	157	0.11	1100	2.10
3-Pentanone	238	0.98	0.26	2.54	(a dia ata)	470	0.70	1 69	2610
3-Methyl-2-hutanone	234	0.98	0.16	2.60	(acipate)	4/9	0.70	1.00	2.04
2 Hevenope	277	0.90	0.78	2.63	Dietnyl neptaneoloate	540	0.77	2.04	0 70 4
2 Mathul 2 pentanona	2772	0.00	0.78	2.00	(pimelate)	519	0.06	2.04	2.78-
5-Methyl-2-pentanone	273	0.90	0.08	2.70	Diethyl octanedioate				
4-Methyl-2-pentanone	273	0.90	0.72	2.64	(suberate)	559	0.63	2.53	2.82 ª
4-Methyl-3-pentanone	2/3	0.90	0.82	2.51	Diethyl nonanedioate				
4-Methyl-3-pentene-					(azelate)	599	0.61	2.99	2.87 ď
2-one	244	0.94	0.52	2.34	Diethyl decanedioate				
3,3-Dimethyl-2-					(sebacate)	639	0.57	3.51	2.90 d
butanone	269	0.91	0.72	2.56	Glyceryl triacetate	458	0.73	0.51	215
2-Heptanone	317	0.86	1.44	2.49	Dimethyl phthalate	414	0.79	1.69	1 99 4
4-Heptanone	317	0.85	1.48	2.45	Diathyl phthalate	404	0.79	2.57	2164
5-Nopanope	394	0.76	2.55	2 4 9	Distance Distance	454	0.70	4.40	2.10
Menthone	405	0.76	2.35	2.06	Dibutyi phinarate	054	0.56	4.40	2.41
Asstanhenone	263	0.03	1 34	1.03				Median value	2.41
Acetophenone	265	0.95	1.54	1.95			NT: 11-		
		Aldebuder	Median value	e 2.55			Nitriles		,
		macinyaes			Acetonitrile	122			2.48 ⁷
Butanal	200	1.05	0.28	1.60	Butyronitrile	200			2.20
Hexanal	280	0.92	1.30	1.95	Succinonitrile	212			2.16^{a_J}
2-Ethylbutanal	276	0.91	1.52	1.59					
2-Ethylhexanal	356	0.81	2.13	2 32			Nitroalkanes		
2-Ethyl-2-hexenal	343	0.83	2.46	1 59			1 (Infourkaries		
Benzaldehyde	254	1.00	1.55	0.85	Nitroethane	169	1.15	0.24	1.11
Demzaldenyde	254	1.00	1.55	0.85	1-Nitropropane	209	1.05	0.81	1.18
		Esters	wiedian value	1.59	2-Nitropropane	205	1.06	0.73	1.19
Mathelenenienate	215	1.02	0.15						
Fib. 1. state	215	1.02	0.15	2.23					
Ethyl acetate	215	1.01	0.03	2.41			Nitroaromatics		
Vinyl acetate	203	1.03	0.64	1.33	Niteshanana	244	1.01		
Methyl butyrate	255	0.94	0.83	2.12	Nitrobenzene	264	1.01	1.80	0.85
Ethyl propionate	255	0.94	0.64	2.38	4-Chloronitrobenzene	304			- 0.18 ^g
Propyl acetate	255	0.94	0.75	2.23	2-INitrotoluene	298	0.93	2.32	0.85
Isopropyl acetate	251	0.93	0.54	2.45	3-Nitrotoluene	299	0.93	2.44	0.71
Ethyl butyrate	295	0.85	1.23	2.41	2,4-Dinitrotoluene	362			0.98
Propyl propionate	295	0.88	1.34	2.22	2,4,6-Trinitrotoluene	420			0.81 ^d
Isopropyl propionate	291	0.87	1.29	2 23	2,4,6-Trinitrochloro-				
Butyl acetate	295	0.88	1 37	2.2.5	benzene	420			0.98 *
Isobutyl acetate	201	0.00	1.27	2.10				Median value	0.85
2-Butenvl acetato	270	0.07	0.70	2.20					0.00
Ethyl pertanoata	217	0.71	0.70	2.77			Miscellaneous		
Ethul & mother	222	0.85	1./4	2.44					
Eury p-metnyi-	114	0.00	1.00		Acetic anhydride	159	1.03	0.06	1.34
	331	0.82	1.89	2.18	Acetyl fluoride	112	1.21	0.10	0.21
rropyi butyrate	335	0.83	1.92	2.19	Diethyl sulfide	240	0.97	1.45	0.96
Isopropyl butyrate	331	0.83	1.94	2.10	2,2'-Dichlorodiethyl				
butyl propionate	335	0.83	1.87	2.26	sulfide	320	0.90	2.36	1.23
rentyl acetate	535	0.83	1.86	2.27	Ethanethiol	160	1.13	0.60	0.48

^aCf. a, Table I. Solubility data mainly from (2 and 18). ^bE_H = 1.37 E_A and E_A calcd. from Eq. 7. k_M = 0.0130 used throughout. ^cAn error probably made in power of 10; 0.97 would give 2.08, reasonable for E_H. ^{det}To get E_H per functional group, value calcd. from Eq. 7 was divided by ^d2, ^e3. ^{f,g}Calcd. using log(c_1/c_2) = ^f($c_{\text{ether}}/c_{\text{water}}$).

dipole moments (cf. the halogen compounds in Table I) is partly due to the fact that dipole-induced dipole forces are small, and that the energy of the dipole-dipole interaction in pure solute compensates for the dipole-dipole interaction between solute and solvent. This compensation does not arise when Equation 1 is used for data on the distribution of a solute with large dipole between a solvent with large dipole and a solvent with no dipole. In such cases we may anticipate that the data on halogenated hydrocarbons will not give as constant a k_M nor will it be the same k_M value as with hydrocarbons.

A troublesome point in the derivation is whether the energy required to make the hole is a function of the volume or surface area of the hole. Langmuir (13) considered it to be a function of the area, but Equation 1 assumes it to be proportional to the volume. There was some question in McGowan's paper (15), whether Equation 1 had been tested with solutes of sufficiently different area to volume ratios to distinguish an area or a volume dependence. The agreement of the data in Table I with Equation 1 clearly seems to indicate a volume dependence.

Eley (10) computed the energy of making a hole on three different bases. If a solvent is considered to be composed of cubes, and the cohesive energy is obtained by faces of cubes being in contact, two of Eley's three methods do not seem proper for the problem. The compressibility which was the basis for the first method, measures the energy required to compress the cubes or perhaps reduce interstitial space formed by molecular motion.

The heat of vaporization, the basis for Eley's third method, is not applicable because the removal of a single cube destroys 6 faces of contact, whereas the removal of two adjacent cubes (to create a hole for a solute particle twice the size of a solvent particle) destroys only 10/2 or 5 faces of contact per volume of solvent particle.

The surface energy, which is the basis for Eley's second method, seems reasonable but leads to an area rather than the volume dependence required by Equation 1.

HYDROGEN-BONDED SOLUTES

McGowan found that by adding a constant to Equation 1 to give Equation 7, the theory could be extended to solutes that hydrogen-bond. Equation 7 can be derived from Equation 2 in a manner similar to the derivation of Equation 1 if a term is added to Equation 2 which represents the difference in orbital overlap energy of solute to solvents 1 and 2. The derivation is not as satisfactory because the presence of chemical bonds will certainly restrict solvent motion and introduce an entropy effect.

For the case where c_1 is the molar concentration of liquid solute and c_2 is the molar solubility in water, McGowan found fair agreement if $E_A = 1.75$ in Equation 7. However, the agreement is not as good as indicated by McGowan because only a portion of the literature data was used.

$$Log (c_1/c_2) = k_M P - E_A$$
(7)

It was decided to test Equation 7 more thoroughly and to separate the compounds into their respective functional groups as shown in Table II. The values of $E_{.1}$ from Equation 7 have been converted to the hydrogen bond energy, E_{ID} in kilocalories per mole by multiplying by 2.3 RT which is 1.37 at 25°.

The most notable fact about the value of E_{II} in Table II is that for a particular functional group, systematic trends with structure are virtually absent. This fact renders suspect the values of E_{II} which deviate very far from the median values, and in these cases, solubility data will be reinvestigated. Also the median values of E_{II} are comparable for different functional groups, but there does seem to be enough difference, particularly with nitro compounds, to justify treating the different functional group series separately. The fact that the E_{II} for nitro compounds is less than for other oxygen-containing functional groups correlates with the lower basicity of the nitro group.

SOLUBILITIES IN LIQUID SULFUR DIOXIDE

The data in Table III show that Equation 1 correlates the solubilities of saturated hydrocarbons in liquid sulfur dioxide. The value of k_M for liquid hydrocarbon-liquid sulfur dioxide is 0.0030 at -29° C. This result can be used along with data on the partition of aromatic hydrocarbons between liquid hydrocarbon and liquid sulfur dioxide to evaluate the bonding energy of aromatic hydrocarbon to sulfur dioxide. Although the data are limited to only four benzene derivatives, the results in Table IV show *E* to be about 1.7 kcal. per mole.

The partition between liquid hydrocarbon, H, and liquid sulfur dioxide, SO₂, can be calculated at -29°C. for any saturated hydrocarbon by Equation 8 and for any aromatic hydrocarbon by Equation 9 [the term 1.49 in Equation 9 is (E/2.30 RT)].

$$Log (c_H/c_{SO_2}) = 0.0030 P$$
 (8)

$$Log (c_{H}/c_{SO_{2}}) = 0.0030 P - 1.49$$
(9)

SOLUBILITIES IN LIQUID AMMONIA

Equation 1 correlates the solubilities of saturated hydrocarbons in liquid ammonia (Table V). The value of k_M for liquid hydrocarbon-liquid ammonia is 0.0044 at 25° C. and 0.0109 at -33.3° C. (boiling point of ammonia).

Surprisingly, the data for olefins in Table VI did not fit Equation 1. The deviation was interpreted as a bonding energy, E, between the olefin and ammonia. Further work will be necessary to determine whether it is really a bonding energy or the theory presented in this article needs modification. This apparent bonding energy is relatively constant at 0.67 kcal. per mole per double bond at -33.3°C. Dienes have values of E twice that of mono-olefins. The value of E for aromatics is three

Table III. Data on Solubility of Alkanes in Liquid Sulfur Dioxide at –29° C.

(Constancy of (1/p) Log₁ (c_2/c), thus Validity of Equation 1)

Alkane	Pa	$(\operatorname{Log} c_1)^{b}$	$-(\operatorname{Log} c_2)^{c}$	$(1/P)$ Log (c_1/c^2)
Butane	191	1.02	- 0.38	0.0033
Hexane	271	0.89	0.01	0.0030
Heptane	311	0.85	0.30	0.0027
Nonane	391	0.75	0.60	0.0029
Decane	431	0.72	0.99	0.0025
a.c. Tabl	- T			

^{*a*}cf. *a*, Table I.

^hConcentration in moles per liter of the pure alkane at -29° C. ^cSolubility of the alkane in liquid sulfur dioxide at -29° C. in the units moles per liter (17).

Table IV. Calculation of the Bonding Energy, E, Between Aromatic Hydrocarbons and Liquid Sulfur Dioxide at –29° C.

Hydrocarbon	P^{a}	$\mathrm{Log}~(\mathit{c}_{\mathrm{H}}/\mathit{c}_{\mathrm{SO}_2})^{b}$	E (kcal./mole)
Benzene	206	- 0.70	1.46
Toluene	246	- 0.72	1.62
\mathbf{X} vlene d	286	- 0.71	1.74
2-Butylbenzene	366	- 0.43	1.70

^acf. a, Table I.

 ${}^{b}c_{\rm H}$ and $c_{\rm SO_2}$ are the solubilities in moles per liter in the alkane, H, and in liquid sulfur dioxide (SO₂). The hydrocarbon, H, varied. For toluene it was heptane, for xylene it was nonane, and for 2-butylbenzene it was decane. The value of $c_{\rm H}$ is probably insensitive to the alkane used. For example, with benzene, $c_{\rm H}$ was -0.70 for butane, -0.77 for hexane, -0.70 for cyclohexane, -0.69 for heptane, and -0.78 for decane. With benzene, the median value of $c_{\rm H}$ was used. All exptl. data obtained from (17).

E was calculated from log $(c_{\rm H}/c_{\rm SO_2}) = 0.0030 P - E/2.30 RT$, an adaptation of Eq. 7.

^dThe xylene was a mixture containing 50% m, 25% p, and 25% o.

times the value for mono-olefins which could be regarded as due to three double bonds in the benzene ring, but may also be just coincidence. The values of E for styrene and indene are between three and four times the value for mono-olefins. Regardless of the interpretation of E, it can be treated as a bonding energy, and the solubility at -33.3°C. in liquid ammonia can be calculated by Equation 10 for saturated hydrocarbons, by Equation 11 for unsaturated hydrocarbons where N is the number of unsaturated linkages, and by Equation 12 for benzene with saturated substituents.

$$Log (c_1/c_2) = 0.0109 P$$
(10)

$$Log (c_1/c_2) = 0.0109 P - 0.67 N/2.30 RT$$
(11)

$$Log (c_1/c_2) = 0.0109 P - 1.85/2.30 RT$$
(12)

ACKNOWLEDGMENT

Grateful acknowledgment is made to the donors of the Petroleum Research Fund administered by the American Chemical Society and to the National Science Foundation for support of this research.

LITERATURE CITED

- Andrews, L. J., Keefer, R. M., J. Am. Chem. Soc. 71, 3644 (1)(1949); 72, 5034 (1950); 74, 640 (1952).
- Ibid., 72, 3114 (1950).
- Aston, J. G., private communication. (3)
- (4)Baker, E. G., Am. Chem. Soc., Div. Petrol. Chem., Preprints-

Table V. Data on Solubility of Saturated Hydrocarbons in Liquid Ammonia at 25° C.

(Constancy of (1/p) Log (c_1/c_2) , thus validity of Equation 1)

The discussion of the	1) 4	(T) b	Log	(ϵ_1/ϵ_2) X 10 ⁴
Hydrocarbon	P^{**}	$(\operatorname{Log} c_1)$	$-(\operatorname{Log} c_2)^*$	P
Butane	191	1.00	0.13	46
Pentane	231	0.94	0.08	44
2-Methylbutane	227	0.93	0.04	43
Hexane	271	0.88	0.35	45
2-Methylpentane	267	0.88	0.30	44
3-Methylpentane	267	0.89	0.27	43
2.2-Dimethylbutane	263	0.87	0.27	44
2,3-Dimethylbutane	263	0.88	0.31	46
Heptane	311	0.84	0.62	47
Octane	351	0.79	0.98	50
2,2,4-Trimethylpentane	339	0.78	0.75	45
Nonane	391	0.75	1.21	50
Decane	431	0.71	1.34	48
3,3,5-Trimethylheptane	419	0.72	1.02	42
2,2,3,4-Tetramethylhexane	415	0.72	1.02	42
Cyclopentane	203	1.03	- 0.07	47
Cyclohexane	241	0.96	0.20	48
Methylcyclopentane	239	0.95	0.16	46
Methylcyclohexane	277	0.89	0.34	44
Ethylcyclopentane	279	0.89	0.42	47
Ethylcyclohexane	317	0.84	0.58	45
2-Propylcyclopentane	315	0.84	0.55	44
2-Butylcyclopentane	355	0.79	0.76	44
Decahydronaphthalene	363	(0.80) ^d	1.03	50
Pentyldecahydro-				
naphthalene '	559	(0.62) ^d	1.86	44
Tris-(2-propyl)cyclo-				
hexane "	577	(0.60) ^d	1.63	39
Methyl-tris-(2-propyl)-				
cyclohexane '	613	(0.57) ď	2.04	43
Diethyl-bis-(2-propyl)-				
cyclohexane '	617	(0.57) ^a	1.74	38
^a cf. a, Table I.				

^bConcentration, moles per liter, pure alkane at 25° C.

"The solubility of the alkane in liquid ammonia at 25° C. in the units moles per liter. These solubilities were calculated from data obtained by the Petroleum Refining Laboratory under the direction of Fenske at the Pennsylvania State University. Data are summarized (7). The solubility data were measured in solutions that were 1-10% by weight. To obtain data at 25° C. it was sometimes necessary to extra pole the data. Use was made of the fact that plots of log of the % by weight against temperature⁻¹ were linear.

^dEstimated from data on analogous compounds

"Commercial samples, the positions of the substituents were not known. In the case of the pentyl substituent, the extent of branching in the substituent is not known

Table VI. Calculation of the Bonding Energy, E, between Unsaturated Hydrocarbons and Liquid Ammonia at -33.3° C.

Hydrocarbon	P 4	$(\text{Log } c_1^b)$	$-(\text{Log } c_2)$	E d
1-Butene	179	1.03	0.31	0.67
as-2-Butene	178	1.05	0.28	0.67
trans-2-Butene	178	1.04	0.38	0.57
2-Methylpropene	175	1.03	0.23	0.71
1-Pentene	219	0.97	0.74	0.74
2-Pentene	218	0.98	0.82	0.64
2-Methyl-1-butene	216	0.98	0.70	0.73
2-Methyl-2-butene	215	0.98	0.79	0.63
Cyclohexene	228	1.00	0.95	0.59
4-Methylcyclohexene	264	0.93	1.10	0.93
1-Octene	339	0.81	2.36	0.58
2-Octene	338	0.81	2.40	0.52
2,4,4-Trimethvl-2-pentene	326	0.80	1.95	0.89
3,5,5-Trimethyl-2-heptene	406	0.74	2.17	1.66
3,4,5,5-Tetramethyl-2-hexene	402	0.74	2.17	1.61
		Me	dian value	0.67
1,3-Butadiene	167	1.07	- 0.51	1.38
1.3-Pentadiene	167	1.07	0.00	1.36
2-Methyl-1,3-butadiene	203	1.01	0.00	1.31
2-Methyl-1,3-pentadiene	242	0.95	0.51	1.29
1-Methyl-1,3-cyclohexadiene	251	0.95	0.63	1.27
		Mee	dian value	1.31
Foluene	246	0.98	- 0.01	1.87
Ethvlbenzene	286	0.92	0.54	1.82
1,2-Dimethylbenzene	283	0.93	0.56	1.74
1,3-Dimethylbenzene	286	0.93	0.61	1.73
Propylbenzene	326	0.86	0.90	1.97
2-Propylbenzene	322	0.86	0.84	1.98
,2,4-Trimethylbenzene	322	0.87	0.98	1.82
Indan	295	0.92	0.73	1.72
l-Methyl-4-(2'-propyl)benzene	362	0.81	1.17	2.16
1,2,3,4-Tetrahydronaphthalene	330	0.87	0.93	1.97
Tris-(2-propyl)benzene '	554	0.68	1.99	(3.69)
Diethyl-bis-(2-propyl)benzene	595	0.65	2.48	(3.58)
Dipentylbenzene	606	0.65	3.21	(3.01)
- · [· · · · ,		Mee	dian value	1.85
Styrene	274	0.95	0.03	2.26
ndene	282	0.94	0.29	2.02
entvlnaphthalene '	512	0.69	2.52	2.60

cf. a. Table I.

^bConcentration, moles per liter, pure hydrocarbon at -33° C.

'The solubility of the hydrocarbon in liquid ammonia at -33°C. (b.p. of ammonia) in the units moles per liter. Solubilities calculated from (7). Extrapolations were sometimes necessary to get data at -33° C.

 ${}^{d}E$ was calculated from log $(c_1/c_2) = 0.0109P - E/2.30 RT$ which is an adaptation of Eq. 7. The value of k_M of 0.0109 was obtained from data on the saturated hydrocarbons which was extrapolated to ~33.3° C. (7).

"Commercial samples, the position of the substituents are unknown. Also the degree of branching in the pentyl substituent is unknown. These circumstances plus the fact that the values of E for these compounds are far out of line renders the solubility data suspect.

Symposia I, No. 2 (Chem. in the Exploration and Production of Petrol.) May 1956; C. A. 52, 12518 (1958).

- (5) Berkheimer, H. E., Ph.D. thesis, Pennsylvania State University, University Park, Pa., 1959.
- Bohon, R. L., Claussen, W. F., J. Am. Chem. Soc. 73, 1571 (1951): Braun, W., Ph.D. thesis, Pennsylvania State University, Uni-(7)versity Park, Pa., 1955
- (8)Claussen, W. F., Polglase, M. F., J. Am. Chem. Soc. 74, 4817 (1952).
- (9)Davis, W. W., Krahl, M. E., Clowes, G. H., Ibid., 64, 108 (1942).
- (10)Eley, D. D., Trans. Faraday Soc. 35, 142, 1281 (1939).
- Klevens, H. B., J. Phys. & Colloid Chem. 54, 283 (1950). (11)
- Kretschmer, C. B., Wiebe, R., J. Am. Chem. Soc. 74, 1276 (12)(1952)
- (13)Langmuir, Irving, Colloid Symposium Monograph 3, 48 (1925).
- (14)McGowan, J. C., J. Appl. Chem. 2, 323 (1952).
- (15)Ibid., 4, 41 (1954).
- Quayle, O. R., Chem. Revs. 53, 484 (1953). (16)
- (17)Satterfield, C. N., Powell, J. H., Jr., Oster, E. A., Jr., Noyes, J. P., Ind. Eng. Chem. 47, 1458 (1955). Seidell, Atherton, "Solubilities," Van Nostrand, New York,
- (18)1940.
- (19) Uhlig, H. H., J. Phys. Chem. 41, 1215 (1937).
- RECEIVED for review November 17, 1958. Accepted March 25, 1959.